

National Center for Rural Road Safety

Est. Dec. 2014

Rural Roadway Departure Countermeasures – Part 2

Presented by:

Keith Knapp, Iowa LTAP / InTrans/Safety Center Tori Brinkly, FHWA

Webinar Logistics

- Duration is 11:00 AM 12:30 PM Mountain
- Webinar recorded and archived on website. For quality of recording, phone will be muted during presentation
- If listening on the phone, please mute your computer
- To maximize the presentation on your screen click the 4 arrows in the top right of the presentation
- At the end of each section, there will be time for Q&A
- There is a handout pod at the bottom of the screen
- Send group lists to info@ruralsafetycenter.org
- Please complete follow-up surveys; they are vital to assessing the webinar quality

Certificates of Completion/CEUs

• Survey Link –

http://survey.constantcontact.com/survey/a07efu9a ofjjoajoolx/start

- Survey closes 2 weeks after webinar
- Expect certificate/CEU form 3-4 weeks after webinar
- Return CEU form to <u>ContinuingEd@montana.edu</u> NOT Safety Center
- Request a verification of completion form

X

I.M. REGISTERING FOR: CreditAddlContinuing Education UnitL Academic Technology a Bladert Bignature Date Instructor Signature Instructor Signature Student information to be removed and shredded once entered into system Instructor Signature Instructor Signature Student information to be removed and shredded once entered into system Instructor Signature Instructor Signature MOUNT PAID \$	Image: State UNIVERSITY Course Registration Form 128 Barnard Hall/OB Baranan, MT Phone: (406) 994-650/Fax: (406) 944-650/Fax: (406) 944-650/Fa	Box 173860 f 59717-3860 l06) 994-7856 montana.edu		
ID #: CEU Hour 18SCEX280717 Pedestrian Treatments for Uncontrolled Locations - Live January 18, 2018 0.150 1.5 Primer on the Joint Use of the HSM and the HFG for Primer on the Joint Use of the HSM and the HFG for 1.5	Student Signature Date Instructor Signature Student information to be removed and shredded once entered into system *Required SOCIAL SECURITY # or MSU STUDENT ID # *Required AMOUNT PAID § CREDIT CARD # CASH CHECK # (Visa or MasterCard ONLY) NOTE: If triplicate hard copy - The PINK copy is the student's official receipt. Please return the WHITE & YELLOW copies to Extended Univ	STATE UNIVERSITY Academic Technology & Outreach VERIFICATION OF COMPLETION February 2, 2018 REGISTRANT: First Last 123 Main St		echnology and Outreach Montana State University 128 Barnard Hall PO Box 173860 ozeman, MT 59717-3860
TOTAL: 0.300 CEU'S 9.0		ID #: Pedestrian Treatments for Uncontrolled Locations - Live 18SCEX280717 January 18, 2018 Primer on the Joint Use of the HSM and the HFG for 18SCEX280720 February 13, 2018 - February 13, 2019	0.150 0.150	Hours 1.50 1.50 9.00 Hours

Co-Hosted by:

U.S. Department of Transportation Federal Highway Administration

The Voice of County Road Officials

Keith Knapp Iowa LTAP/InTrans/Safety Center

Tori Brinkly FHWA

Goals of this Webinar

Once you have completed this webinar, you will: learn about various roadway marking/signing treatments, with a focus on horizontal curves, and how high friction surface treatments can help keep vehicles on the road.

To achieve the webinar goal, you will learn to:

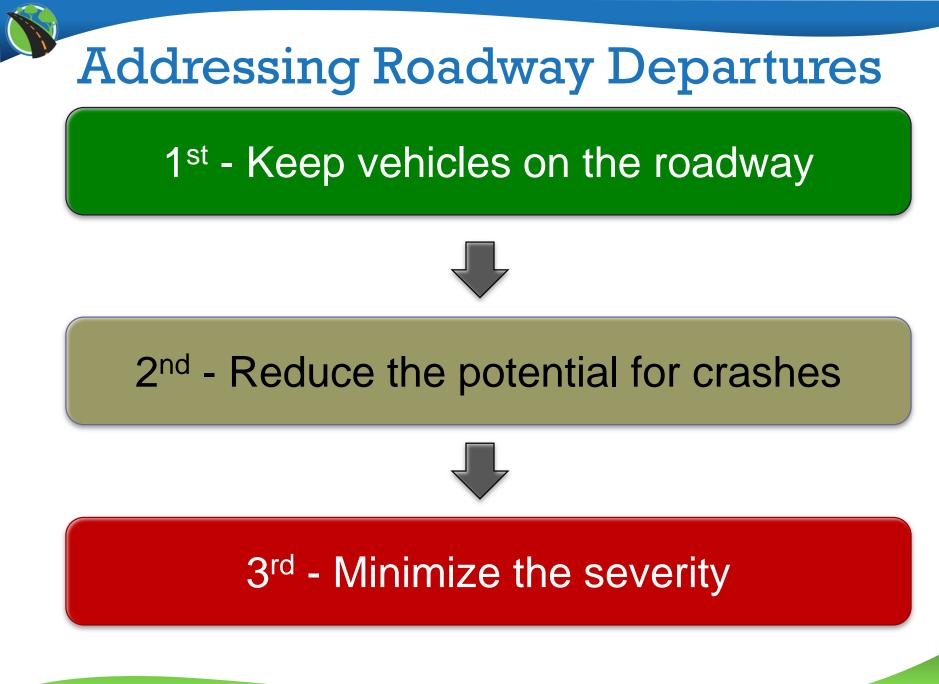
Summarize what the MUTCD says about pavement markings and horizontal curve signs

Describe some of what we know about the potential safety benefits of pavement markings and horizontal curve signing

Describe the role of friction in roadway departures

Identify effective methods to improve friction

Describe the safety benefits of high friction surface treatments


The Rural RwD Component of Fatalities

U.S. Traffic Fatalities 35,230

What is a Roadway Departure (RwD)?

FHWA Definition: A crash in which a vehicle crosses an edge line, a center line, or otherwise leaves the traveled way.

Keep Vehicles on the Roadway

Strategies include:

- Improved curve delineation
- Friction treatments in curves and other spot locations
- Edge line, shoulder & center line rumble strips.

Keith Knapp, FHWA

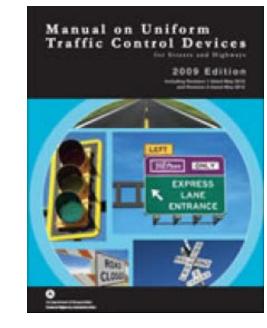
Summarize what the MUTCD says about pavement markings and horizontal curve signs

Describe some of what we know about the potential safety benefits of pavement markings and horizontal curve signing

Describe the role of friction in roadway departures

Identify effective methods to improve friction

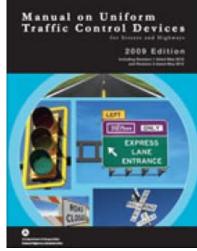
Describe the safety benefits of high friction surface treatments



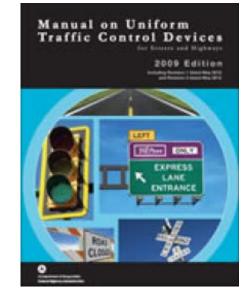
Keep Vehicles on the Roadway

Pavement Markings

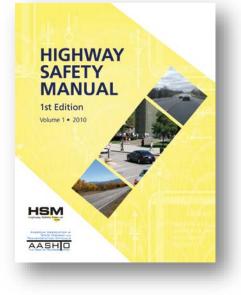
MUTCD & Center Lines (Sec. 3B.01)


- Yellow Center Line Pavement Markings and Warrants
- Shall be Placed on All Paved Urban Arterials and Collectors that have a Traveled Way ≥ 20 feet and ADT ≥ 6,000

 Shall also be Placed on All Paved Two-Way Streets or Highways with ≥ Three Lanes for Moving Motor Vehicle Traffic


MUTCD & Center Lines (3B.01)

- <u>Should</u> be Placed on All Urban Arterials and Collectors that have a Traveled Way ≥ 20 feet and ADT ≥ 4,000
- <u>Should</u> also be Placed on All Rural Arterials and Collectors that have a Traveled Way ≥ 18 feet and ADT ≥ 3,000
- <u>Should</u> also be Placed On other Traveled Ways where an Engineering Study Indicates a Need
- <u>Should</u> Use Engineering Judgment to Determine whether to Place on Traveled Ways of < 16 feet
- <u>May</u> be placed on other Paved Two-Way Traveled Ways that are ≥ 16 feet



MUTCD Edgeline (Sec. 3B.07)

- Warrants for Use of Edge Lines
- <u>Shall be</u> Placed
 - Freeways and Expressways
 - > Rural arterials with a Traveled Way \geq 20 Feet and ADT \geq 6,000
- <u>Should</u> be Placed
 - ➢ Rural Arterials and Collectors with a Traveled
 Way ≥ 20 feet and ADT ≥ 3,000
 - Other Paved Streets and Highways Where an Engineering Study Indicates a Need
- <u>Should not</u> be Placed where Engineering Study or Judgement Indicates Providing them will Decrease Safety

Edge and Centerline Markings

Edge lines

Centerlines

Table 13-39. Potential Crash Effects of Placing Edgeline and Centerline Markings (8)

Treatment	Setting (Road Type)	Traffic Volume	Crash Type (Severity)	CMF	Std. Error
Place edgeline and centerline markings	Rural (Two-lane/ Multilane undivided)	Unspecified	All types (Injury)	0.76	0.1

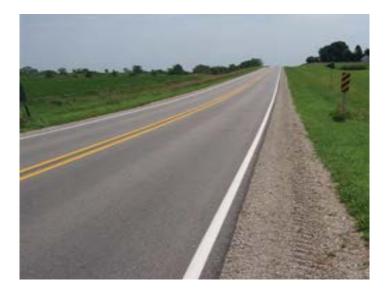
Base Condition: Absence of markings.

Missouri Case Study (1 of 3)

Before 2008, MoDOT did not stripe edge lines for routes with less than 1,000 ADT

From 2005-2007

- 35,000 line miles with \leq 1,000 ADT
- 339 fatalities & 2,280 disabling injuries
- 13,000 line miles with 400 1,000 ADT
- 219 fatalities & 1,500 disabling injuries
- 2/3 of the fatalities and severe injuries
- "Manageable" additional miles to paint edge lines


Missouri Case Study (2 of 3)

- Edge lines painted on 73 routes in 2009
- Study included 1,138 edge line miles
- 2006-2008 before period data
- 2010 & 2011 after period data
- Empirical Bayes Method of analysis used

Missouri Case Study (3 of 3)

Overall Effectiveness	Various Counties				
Severity Level	Total	F & DI			
Observed Crashes Before Period	576	105			
Observed Crashes After Period	327	46			
Effectiveness (% Change)	15.2	19.3			
Direction of Change	Decrease	Decrease			
Significance	Significant at 95% confidence level	Not significant at 90% confidence level			

Install Edgeline Markings

Description	CRF	Crash type	Crash severity	Area Type	Quality
Install edgelines (tangent)***	6.1%	A11	A11	Rural	*****
Install edgelines (curves)***	25.9 %	A11	A11	Rural	★★★☆☆

Are Wider Edge Lines Better?

6" Width



Countermeasure: Install wider markings WITHOUT resurfacing

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Агеа Туре
<u>0.78</u>	<u>22</u>	****	All	Fatal,Serious injury,Minor injury	Principal Arterial Other Freeways and Expressways	Rural

Reflective Barrier Delineation

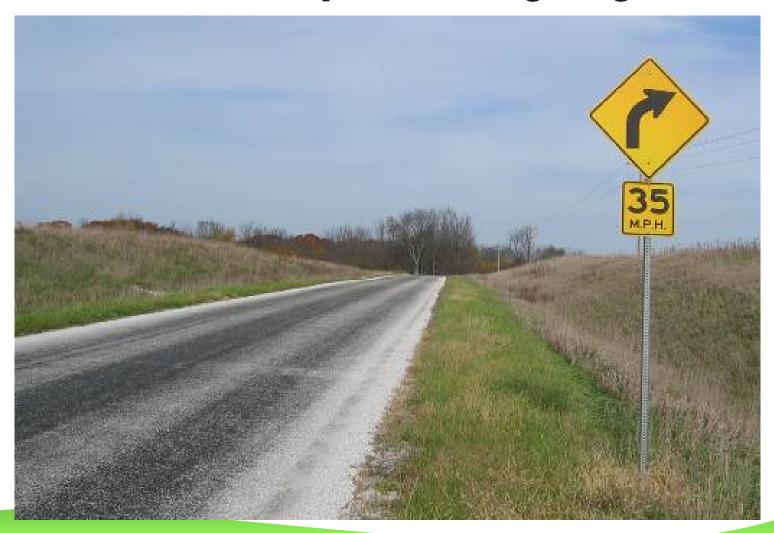
Other Markings

- In-Lane Pavement Markings
- Optical Speed Bars
- Small Speed Reductions Found
- CMF Clearinghouse Input

Directing Your Questions via the Chat Pod

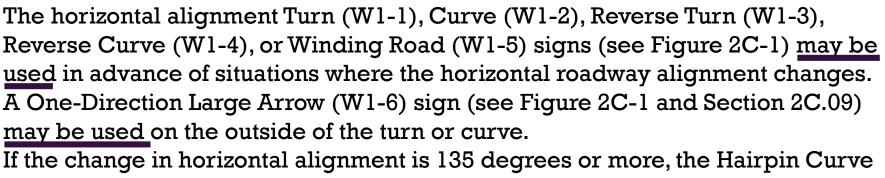
1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)


Everyone

3. Answers will appear here unless addressed verbally

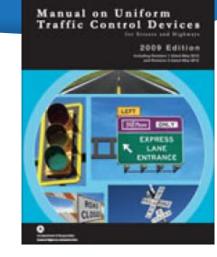
2. Type your question or comment here $\equiv -$


 \mathcal{S}

Keeping Vehicles on the Roadway Roadway Curve Signing

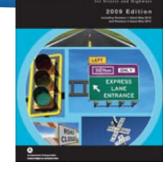
MUTCD: 2003 and Earlier

- Application of Warning Signs (Section 2C.02): The use of warning signs shall be based on an engineering study or on engineering judgment
- Horizontal Alignment Signs (W1-1 through W1-5, W1-11, W1-15) (Section 2C.06)


(W1-11) sign (see Figure 2C-1) <u>may be used</u>.

If the change in horizontal alignment is approximately 270 degrees, such as on a cloverleaf interchange ramp, the 270-degree Loop (W1-15) sign (see Figure 2C-1) may be used.

anual on Uniform


2009 MUTCD

• Application of Warning Signs (Section 2C.02): The use of warning signs shall be based on an engineering study or on engineering judgment

Horizontal Alignment Warning Signs (Section 2C.06)

In advance of horizontal curves on freeways, on expressways, and on roadways with more than 1,000 AADT that are functionally classified as arterials or collectors, horizontal alignment warning signs shall be used in accordance with Table 2C-5 based on the speed differential between the roadway's posted or statutory speed limit or 85th-percentile speed, whichever is higher, or the prevailing speed on the approach to the curve, and the horizontal curve's advisory speed. MUTCD: Table 2C-5

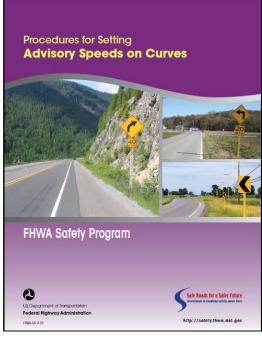
Manual on Uniform Traffic Control Devices

Table 2C-5. Horizontal Alignment Sign Selection

Type of	Difference Between Speed Limit and Advisory Speed						
Horizontal Alignment Sign	5 mph	10 mph	15 mph	20 mph	25 mph or higher		
Turn (W1-1), Curve (W1-2), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1- 5), and Combination Horizontal Alignment/Intersection (W10-1) (see Section 2C.07 to determine which sign to use)	Recommended	Required	Required	Required	Required		
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Required		
Chevrons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required		
Exit Speed (W13-2) and Ramp Speed (W13-3) on exit ramp	Optional	Optional	Recommended	Required	Required		

2009 MUTCD (Section 2C.08)

Support: Among the established engineering practices that are appropriate for the determination of the recommended advisory speed for a horizontal curve are the following:


- A. An accelerometer that provides a direct determination of side friction factors
- B. A design speed equation
- C. A traditional ball-bank indicator using the following criteria:
 - 16 degrees of ball-bank for speeds of 20 mph or less
 - 14 degrees of ball-bank for speeds of 25 to 30 mph
 - 12 degrees of ball-bank for speeds of 35 mph and higher

Advisory Speed Guidance

The handbook describes:

- 1. Guidelines for determining when an advisory speed is needed;
- 2. Criteria for identifying the appropriate advisory speed;
- 3. An engineering study method for determining the advisory speed; and
- 4. Guidelines for selecting other curve related traffic control devices.

31

Advance Static Curve Warning Signs

Countermeasure: Advance static curve warning signs

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type
<u>0.7</u>	<u>30</u>	****	All	Serious injury,Minor injury	Not specified	Not specified
<u>0.92</u>	<u>8</u>	*****	All	Property Damage Only (PDO)	Not specified	Not specified

Enhancements (2/4)

Enhancements (3/4)

Overhead Sign with Yellow Warning Flashers

Enhancements (4/4)

Dynamic Signs

Description	CRF	Crash type	Crash severity	Area Type	Quality
Install dynamic speed feedback sign***	5%	A11	All	Rural Curve	****

Countermeasure: Install chevron signs on horizontal curves

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type	Reference
0.96	4	****	Non-intersection	All	All	Rural	Srinivasan et al., 2009
0.94	6	****	Head on,Non- intersection,Run off road,Sideswipe	All	All	Rural	Srinivasan et al., 2009
0.84	16	****	Non-intersection	Fatal,Serious injury,Minor injury	All	Rural	Srinivasan et al., 2009
0.75	25	****	Nighttime,Non- intersection	All	All	Rural	Srinivasan et al., 2009
0.78	22	****	Head on,Nighttime,Non- intersection,Run off road,Sideswipe	All	All	Rural	Srinivasan et al., 2009

MUTCD: Table 2C-5

Table 2C-5. Horizontal Alignment Sign Selection

Type of	Difference Between Speed Limit and Advisory Speed					
Horizontal Alignment Sign	5 mph	10 mph	15 mph	20 mph	25 mph or higher	
Turn (W1-1), Curve (W1-2), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1- 5), and Combination Horizontal Alignment/Intersection (W10-1) (see Section 2C.07 to determine which sign to use)	Recommended	Required	Required	Required	Required	
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Required	
Chevrons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required	
Exit Speed (W13-2) and Ramp Speed (W13-3) on exit ramp	Optional	Optional	Recommended	Required	Required	

Table 2C-6. Typical Spacing of Chevron Alignment Signs on Horizontal Curves

Advisory Speed	Curve Radius	Sign Spacing
15 or less	Less than 200	40
20 to 30	200 to 400	80
35 to 45	401 to 700	120
50 to 60	701 to 1,250	160
More than 60	More than 1,250	200

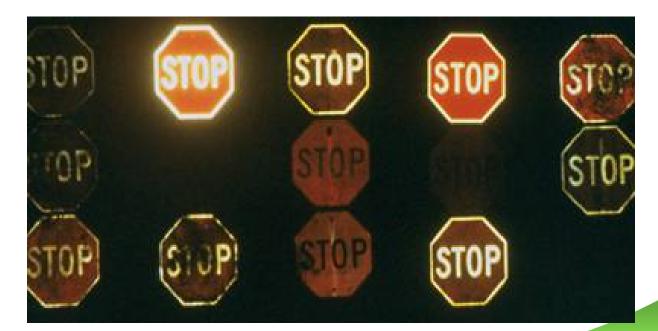
Note: The relationship between the curve radius and the advisory speed shown in this table should not be used to determine the advisory speed.

Nighttime Driving

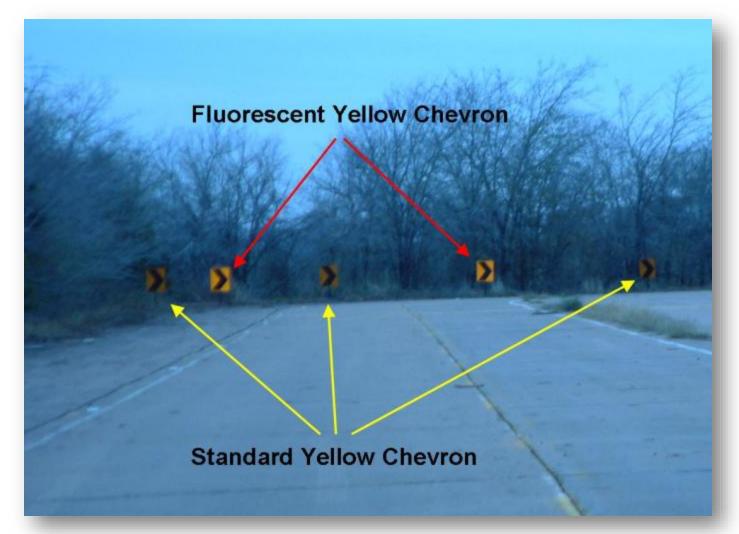
Daytime Many cues available Driver task relatively easy

Nighttime Few cues remain Task more difficult

Retroreflectivity provides nighttime guidance


Retroreflectivity

Sign Maintenance is Important



High Grade Sheeting

Source: Texas Transportation Institute

Countermeasure: Install new fluorescent curve signs or upgrade existing curve signs to fluorescent sheeting

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type
0.82	<u>18</u>	***	Non-intersection	All	All	Rural
0.82	<u>18</u>	****	Head on,Non- intersection,Run off road,Sideswipe	All	All	Rural
<u>0.75</u>	25	****	Non-intersection	Fatal,Serious injury,Minor injury	All	Rural
0.65	35	****	Nighttime,Non- intersection	All	All	Rural
0.66	<u>34</u>	****	Head on,Nighttime,Non- intersection,Run off road,Sideswipe	All	All	Rural

Sheeting and Orientation

Daytime:

Nighttime:

Sight Distance Before & After

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

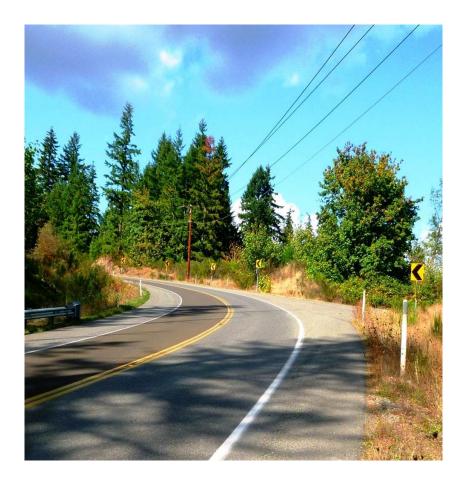
2. Type your question or comment here $\equiv -$

 \mathcal{S}

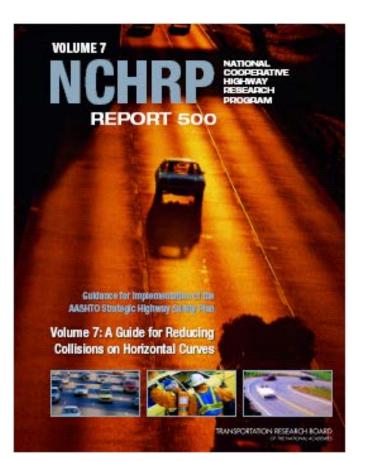
Summarize what the MUTCD says about pavement markings and horizontal curve signs

Describe some of what we know about the potential safety benefits of pavement markings and horizontal curve signing

Describe the role of friction in roadway departures


Identify effective methods to improve friction

Describe the safety benefits of high friction surface treatments


Pavement Friction

Keeping Vehicles on the Roadway

Provide Skid-Resistant Pavement Surfaces

15.2 A - Reduce the likelihood of a vehicle leaving its lane and either crossing the roadway centerline or leaving the roadway at a horizontal curve

http://www.trb.org/Publications/Public/Blurbs/A Guide for Reducing Collisions on Horizontal Curv 154782.aspx

Provide Skid-Resistant Pavement Surfaces

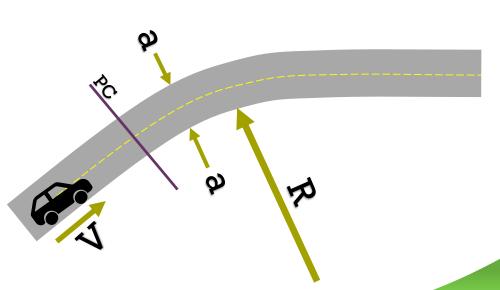
Since the 1920's it has been recognized that Pavement-Tire friction can make a significant contribution to highway safety, particularly the probability of wet skidding crashes.

Skid Related Crashes are Determined by Many Factors

- Tire Issues
- Weather Conditions
- Aggregate Friction
 Characteristics
- Bond Capability of the Pavement Binder
- Friction Demand

Contributing Factors for Friction Demand

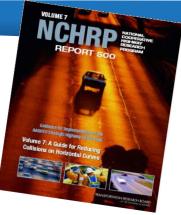
- Road Geometry
- Vehicle Speeds
- Driver Actions

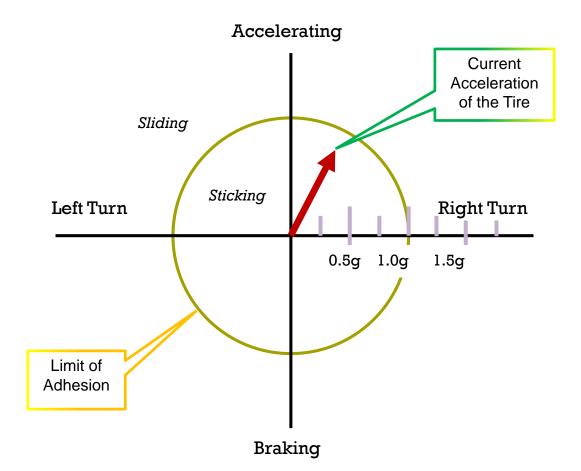

- Trucks
 - Truck tire coefficient of friction is about 70% of passenger cars
 - Truck tires have about 10% higher friction demand

AASHTO Horizontal Curve Design Model

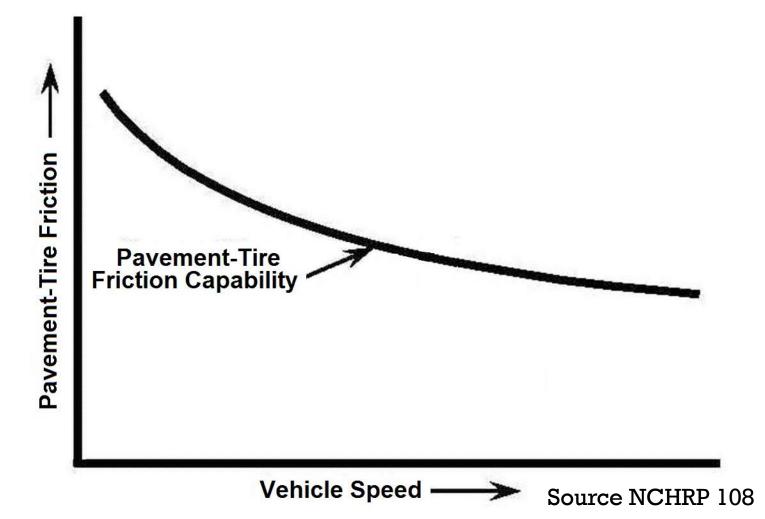
- $f = (V^2/15R) e$
 - e = superelevation
 - f = side friction factor
 - V = design speed (mph)
 - R = radius of curve (ft)

PC = point of curvature

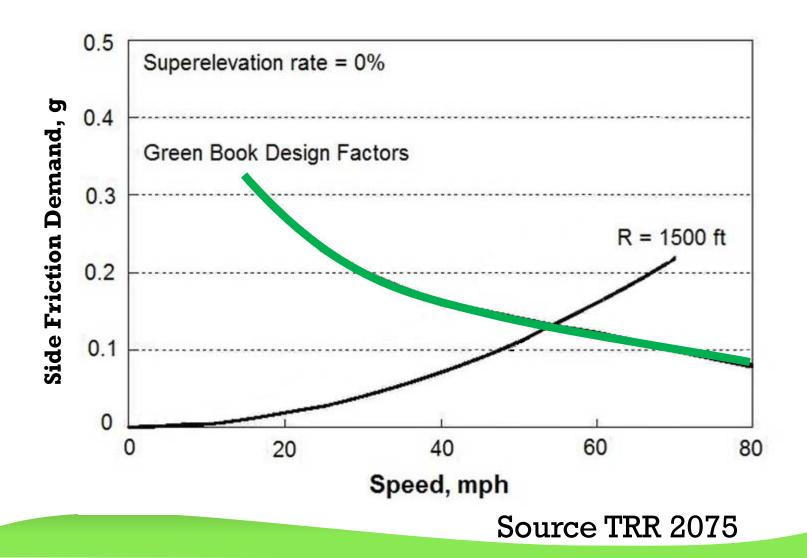

Basis for AASHTO Curve Design Model is for <u>Driver Comfort</u>


Although the curve design policy stems from the laws of mechanics, the values used in design depend on practical limits and factors determined empirically over the range of variables involved.

AASHTO Design Assumptions


- Vehicles do not exceed the design speed, and
- Vehicles traverse the curve following a constant radius.
- Several studies have shown that under real world conditions both of these assumption are violated.
- Likelihood of skidding increases when these assumptions are violated.

Circle of Friction


Conceptual Relationship

(Friction Demand, Speed and Friction Availability)

Example of Variable Friction Demand

Relationship between curve speed and side friction demand for two radii

Actual Low Friction Road Surface

https://www.youtube.com/watch?v=cgyOOuRZb98

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here $\equiv -$

 \mathcal{S}

Tori Brinkly, FHWA

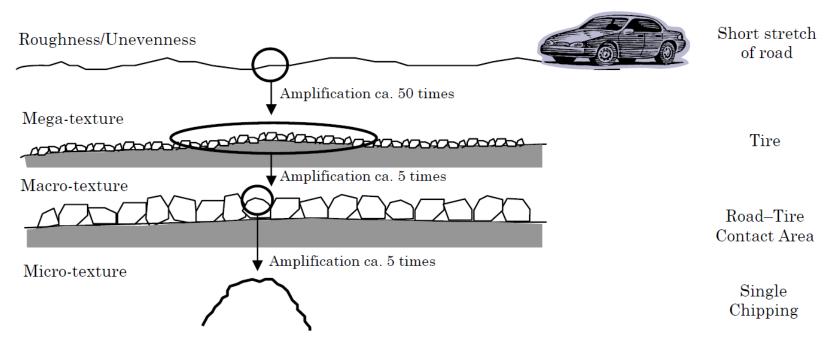
Summarize what the MUTCD says about pavement markings and horizontal curve signs

Describe some of what we know about the potential safety benefits of pavement markings and horizontal curve signing

Describe the role of friction in roadway departures

Identify effective methods to improve friction

Describe the safety benefits of high friction surface treatments


Some Common Methods to Restore or Add Friction

- Chip Seal (pavement preservation)
- Micro Milling
- Shot Blasting
- Grooving (concrete)
- Resurface with a friction course
 - NovaChip® (UTBWC)
 - HFST (critical spot Improvement)

Any of these methods may be an appropriate solution depending on the definition of the problem.

Reference Length

What Defines a High Friction Surface Treatment?

- 1. A pavement surface that has high friction values.
- 2. Friction will last a long period of time.
 - So, the key issue is to define:
 - what is a high friction value and
 - what is a long period of time

What is a High Friction Surface Treatment (HFST)?

High Friction Surface Treatments (HFST) are pavement surfacing overlay systems:

- With exceptional skid-resistant properties that are not typically acquired by conventional materials
- Which retain the higher friction property for a much longer time.

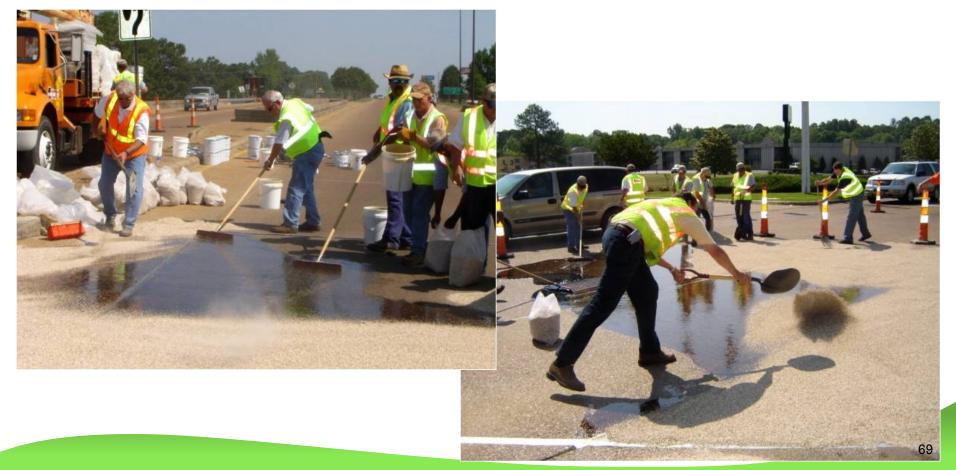
HFST is applied with commercially available aggregate, resin-based products, and installation processes.

Generally applied in short sections to improve spot locations where friction demand is critical.

3 mm aggregate
Now commercially available
from Arkansas!

The aggregate that defines HFST is **Calcined Bauxite** which provides the highest resistance to polishing and friction durability.

Binder Resin System (all proprietary blends)


- 2-Part Epoxy, Polyester, or Acrylic
- Mixed On-Site
- Temperature and Humidity Specifications

HFST Manual Installation

Manual mixing of epoxy material and application with squeegee; with aggregate tossed by hand.

HFST Automated Installation

Machine mixing and application of epoxy and aggregate (limited hand/squeegee work)

HFST Demo Installation Video

HFST Specifications

- AASHTO PP 79-14 "Standard Practice for High Friction Surface Treatment for Asphalt and Concrete Pavements" requires Calcined Bauxite.
- In-place friction characteristics must meet a minimum requirement of 65 FN40R when tested in accordance to AASHTO T242 upon completion of the installation.

Some State requirements exceed 65!

- The 3 run average, SN40 wet value on the concrete pavement was 52
- The 3 run average, SN40 wet value on the HFST was 85
- Regardless of the speed, the stopping difference was <u>25% 30%</u>

Texas Transportation Institute Friction Test Results

Reductions of 25% to 30% stopping distance.

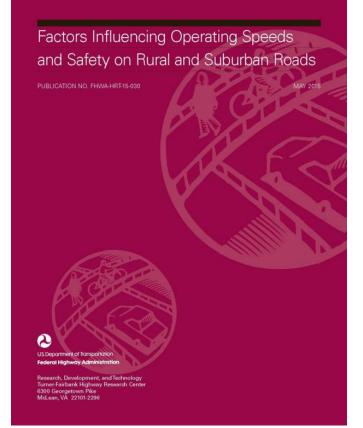
https://www.youtube.com/watch?v=bJuBldbviys

How Long Does HFST Last?

- The most significant issue is existing pavement condition
- Expecting 10+ years based on accelerated test track results and current project experience
- Depends on having a good specification and a good installation

Why Use HFST?

- Pavement in curves receive shear and tensile forces, which can accelerate polishing when excessive friction demand occurs.
- High friction values allows HFST to resist polishing better than other aggregates.
- Properly placed quality polymer binders retain the aggregate, with 50% embedment necessary for superior performance.


Recommended Distance Ahead of the PC to Begin HFST Application

Approach Speed (mph)	Curve Speed (mph)						
	30	35	40	45	50	55	60
35	35	-	-	-	-	-	-
40	76	41	-	-	-	-	-
45	122	86	46	-	-	-	-
50	173	138	97	51	-	-	-
55	230	194	154	108	57	-	-
 60	292	257	216	170	119	62	-
65	359	324	284	238	186	130	68

https://static.tti.tamu.edu/tti.tamu.edu/documents/TTI-2012-8.pdf

Operational Effect of HFST on Vehicular Performance

Chapter 4 examined the effect on operating speed when HFST was applied in horizontal curves and found no statistically significant change

https://www.fhwa.dot.gov/publications/research/safety/15030/15030.pdf 79

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here $\equiv -$

 \mathcal{S}

Tori Brinkly, FHWA

Summarize what the MUTCD says about pavement markings and horizontal curve signs

Describe some of what we know about the potential safety benefits of pavement markings and horizontal curve signing

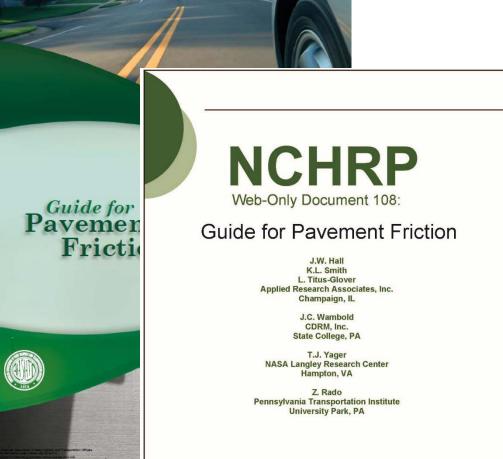
Describe the role of friction in roadway departures

Identify effective methods to improve friction

Describe the safety benefits of high friction surface treatments

Agency Goals and Expectation?

- Safety
 - ✓ High Crash Locations
 - Usually Wet Weather Related Crashes
 - High Friction Demand Locations
 - ✓ Systemic Safety
 - Risk Based (Preventative Action)
- Operations
- Longevity (Durability)
 - ✓ Return on Investment
 - ✓ Concern for Replacement


Provide Skid-Resistant Pavement Surfaces

Crash Types Addressed by Improving **Pavement Friction:**

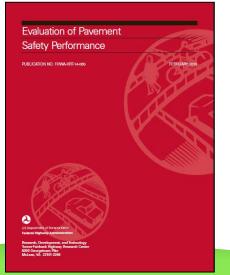
- -Wet Weather
- -Curves
- -Other Skidding (e.g. too fast for conditions)

http://www.trb.org/Publications/Blurbs/161756.aspx

Contractor's Final Report for NCHRP Project 01-43 Submitted February 2009

Strategies for Reducing Crashes (Where Can Friction Benefit Safety?)

- 1. Horizontal Curves
- 2. Approach to Intersections
- 3. Grades


When the pavement has:

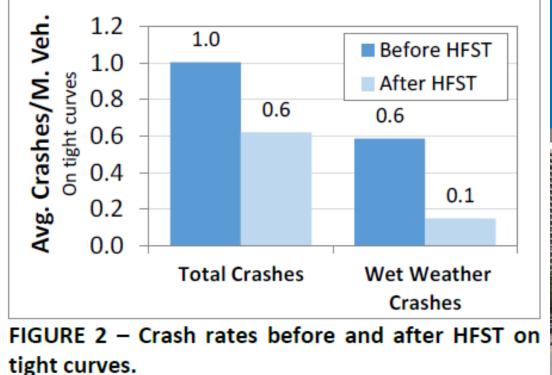
- Marginal friction caused by weather
- Friction values not compatible with approach speeds and geometrics (friction demand)

HFST Safety Effectiveness Study

Evaluation of Pavement Safety Performance		8 State Naïve Study	Study w/Comparison Sites		
Total Crashes	Ramps CMF (CRF)	0.48 (52%)	0.65 (35%)		
	Curves CMF (CRF)	0.63 (37%)	0.76 (24%)		
Wet Road	Ramps CMF (CRF)	0.21 (79%)	0.14 (86%)		
Crashes	Curves CMF(CRF)	0.37 (63%)	0.48 (52%)		

(includes a 25% penalty per HSM)

http://www.fhwa.dot.gov/publications/resea rch/safety/14065/14065.pdf


Kentucky HFST Program

1 %

(as of 6/22/2015)

Slide Courtesy of Kentucky Transportation Cabinet

HFST Performance in Florida


High Friction Surface Treatment Guidelines

Project Selection, Materials, and Construction

http://www.fdot.gov/materials/pavement/performance/ndt/documents/hfstguidelines.pdf

Pennsylvania Success Story

Pennsylvania Success Story Video

STEPHEN POHOWSKY

PENNDOT - SAFETY PROGRAM SPECIALIST

https://www.youtube.com/watch?v=4jjAJytbEls&feature=youtu.be

Pennsylvania Project Summary Installed 27 Oct 2012

Traffic	5,200 AADT =	Hackett Ave
	4,600/8,900 AADT =	Wood Ave
Crashes	3 yrs prior to Install =	26
	Since Installation =	1
Skid	Before Install =	22
Number	After Install =	75

California Success Story

US. Department of Transportation Federal Highway Administration NORTHERN CALIFORNIA US 199-Del Norte County

CASE STUDY

HIGH FRICTION SURFACE TREATMENT (HIFST)

A Life-Saving and Cost-Effective Solution for an Environmentally Sensitive Location


- 4,000 ADT, high truck volume
- 280 ft radius, $< \frac{1}{4}$ -mile curve
- 30 wet crashes from 2006 to 2009
 - 10x statewide injury rate
 - 18x statewide total rate

NB 01-DN-199 PM 8.2

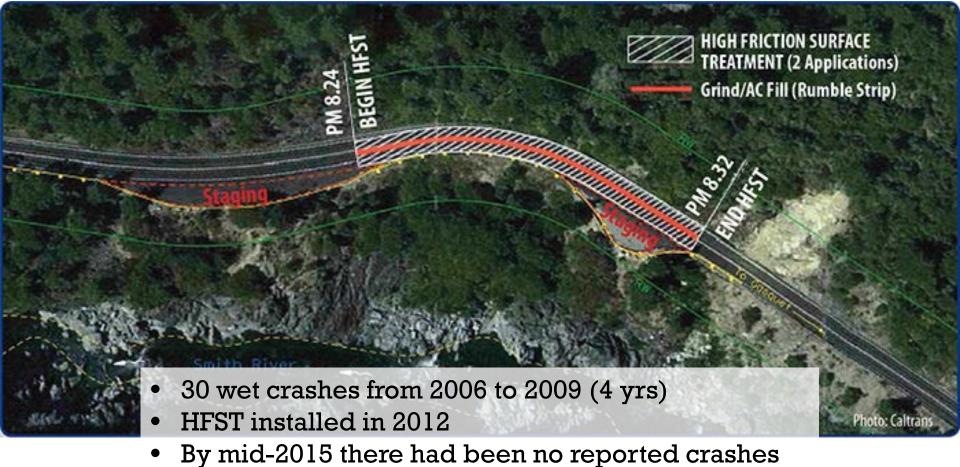
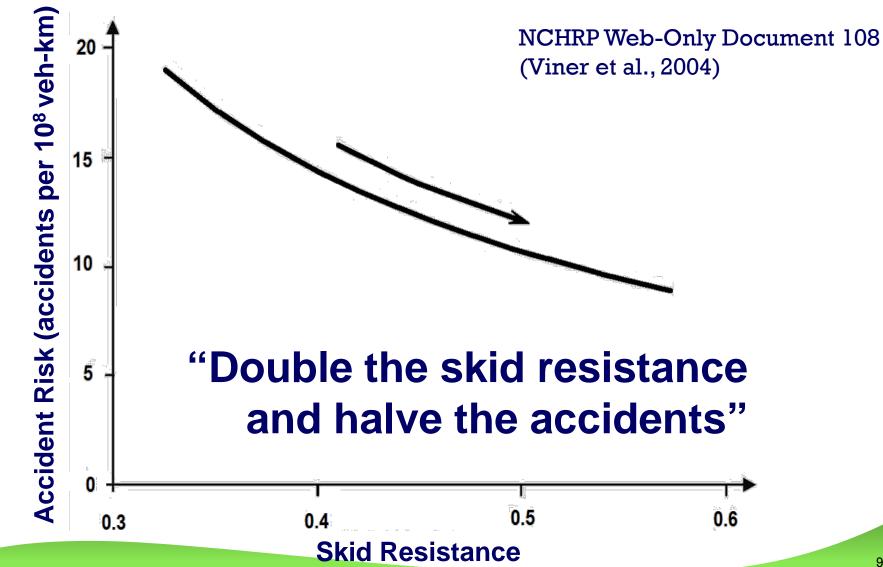

HIGH FRICTION SURFACE TREATMENT (HFST)

Table 1. Comparison of Factors between HFST and Curve Realignment on US 199

Curve Realignment	Environmental Review & Design Timeframe	2-5 Years
	Construction Duration	6+ Months
	Cost	\$14,000,000+

Install HFST Summer of 2012

since the HFST installation



HFST is <u>**not</u>** a pavement treatment that happens to have safety benefits...</u>

HFST is a **great safety treatment** that happens to be a pavement!

To be applicable, HFST must still provide the functions of a pavement for durability, but it must greatly reduce crashes for a significant duration to distinguish its unique value.

Pavement Friction and Crash Risk Relationship

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here $\equiv -$

 \mathcal{S}

http://safety.fhwa.dot.gov/roadway_dept/pavement_friction http://www.atssa.com/Resources/HighFrictionSurfacing/FAQs.aspx https://safety.fhwa.dot.gov/speedmgt/ref_mats/fhwasal121/index.cfm

> *Friction Fun – Laws of Motion* <u>https://www.youtube.com/watch?v=_bMxJ4IU6GY</u>

In this webinar, you have learned to:

Summarize what the MUTCD says about pavement markings and horizontal curve signs

Describe some of what we know about the potential safety benefits of pavement markings and horizontal curve signing

Describe the role of friction in roadway departures

Identify effective methods to improve friction

Describe the safety benefits of high friction surface treatments

SC Upcoming 2018 Webinars

- Rural Roadway Departure Countermeasures Pt 3 Dec. 18th, 11:00 AM – 12:30 PM Mountain
- Framework for Bikeway Designation on Rural Roads

Jan. 31st, 11:00 AM to 12:30 PM Mountain

RRwD Archived Webinars

• EDC5 Reducing Rural Roadway Departures Webinar

https://connectdot.connectsolutions.com/p19821 15wf44/?proto=true

 Rural Roadway Departure Countermeasures – Pt 1

<u>https://ruralsafetycenter.org/training-</u> <u>education/safety-center-trainings/archived-</u> <u>safety-center-trainings/</u>

December 4-6, 2018 Savannah, GA

www.ruralsafetycenter.org/newsevents/bridging-the-gap-summit/

Co-hosted by:

The Voice of County Road Officials

Contact Information

If you have any questions related to this presentation, please contact:

Keith Knapp—<u>kknapp@iastate.edu</u> Tori Brinkly—<u>Tori.Brinkly@dot.gov</u>

Or contact the National Center for Rural Road Safety Help Desk at: (844) 330-2200 or info@ruralsafetycenter.org http://ruralsafetycenter.org/