

National Center for Rural Road Safety

Est. Dec. 2014

Rural Roadway Departure Countermeasures – Part 3

Presented by:

Keith Knapp, Iowa LTAP / InTrans/Safety Center Dick Albin, FHWA

Webinar Logistics

- Duration is 11:00 AM 12:30 PM Mountain
- Webinar recorded and archived on website. For quality of recording, phone will be muted during presentation
- If listening on the phone, please mute your computer
- To maximize the presentation on your screen click the 4 arrows in the top right of the presentation
- At the end of each section, there will be time for Q&A
- There is a handout pod at the bottom of the screen
- Send group lists to info@ruralsafetycenter.org
- Please complete follow-up surveys; they are vital to assessing the webinar quality

Certificates of Completion/CEUs

• Survey Link –

http://survey.constantcontact.com/survey/a07efxrg 8n6jpoe0rrg/start

- Survey closes 2 weeks after webinar
- Expect certificate/CEU form 3-4 weeks after webinar
- Return CEU form to <u>ContinuingEd@montana.edu</u> NOT Safety Center
- Request a verification of completion form

X

I.M. REGISTERING FOR: CreditAuditContinuing Education Units_X	Image: State UNIVERSITY Course Registration Form 0ffice of Continuin 128 Barrard Hall/OB Bareman, MT Phone: (406) 904-6560/Fax: (406) 904-6660/Fax: (406) 904-6660/Fax: (406) 904-660/Fax: (406) 904-60/Fax: (40	Box 173800 59717-3860 06) 994-7856 montana.edu		
ID #: CEU Hour 18SCEX280717 Pedestrian Treatments for Uncontrolled Locations - Live January 18, 2018 0.150 1.5 Primer on the Joint Use of the HSM and the HFG for Primer on the Joint Use of the HSM and the HFG for 1.5	Student Signature Date Instructor Signature Student information to be removed and shredded once entered into system *Required SOCIAL SECURITY # or MSU STUDENT ID #	STATE UNIVERSITY Academic Technology & Outreach VERIFICATION OF COMPLETION February 2, 2018 REGISTRANT: First Last 123 Main St		chnology and Outreach Montana State University 128 Barnard Hall PO Box 173860 ozeman, MT 59717-3860
TOTAL: 0.300 CEU'S 9.0		ID #: Pedestrian Treatments for Uncontrolled Locations - Live 18SCEX280717 January 18, 2018 Primer on the Joint Use of the HSM and the HFG for 18SCEX280720 February 13, 2018 - February 13, 2019	0.150 0.150	Hours 1.50 1.50 9.00 Hours

Co-Hosted by:

U.S. Department of Transportation Federal Highway Administration

The Voice of County Road Officials

Keith Knapp Iowa LTAP/InTrans/Safety Center

Dick Albin FHWA

Once you have completed this webinar, you will: learn about clear zone treatments and crash testing of roadside hardware.

To achieve the webinar goal, you will learn to:

Define clear zone, it's basis, and limitations

Describe critical, traversable, and recoverable slopes

List some methods to reduce the potential to crash when a vehicle leaves the roadway

Identify the criteria for determining the crashworthiness of roadside hardware

Describe the implementation plan for MASH

Identify hardware that has been tested to MASH

The Rural RwD Component of Fatalities

U.S. Traffic Fatalities 35,230

What is a Roadway Departure (RwD)?

FHWA Definition: A crash in which a vehicle crosses an edge line, a center line, or otherwise leaves the traveled way.

Roadway Departure Objectives 1st - Keep vehicles on the road 2nd - Reduce the potential for crashes

3rd - Minimize the severity

2nd - Reduce the potential for crashes

- SafetyEdgeSM
- Maintained clear zones
- Traversable roadside slope

3rd - Minimize the severity

Breakaway Features

- —Signs and luminaire supports—Utility poles
- Barriers to shield obstacles including:
 - -Trees and shrubbery
 - -Other fixed objects
 - -Slopes

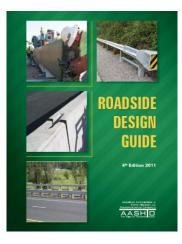
Keith Knapp, Iowa LTAP

Define clear zone, it's basis, and limitations

Describe critical, traversable, and recoverable slopes

List some methods to reduce the potential to crash when a vehicle leaves the roadway

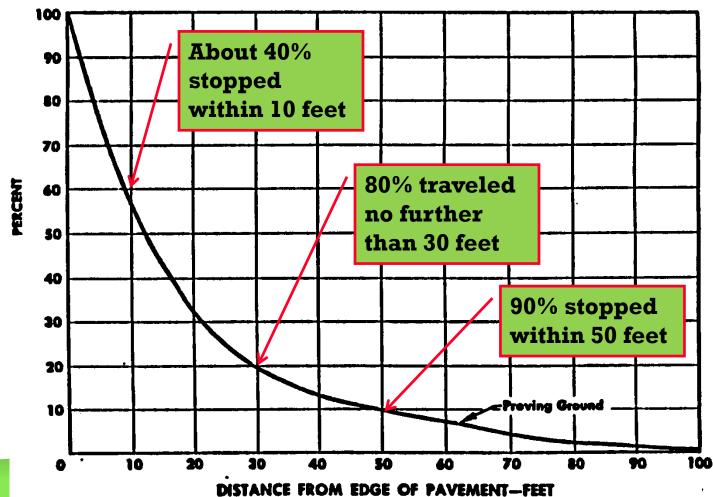

Identify the criteria for determining the crashworthiness of roadside hardware


Describe the implementation plan for MASH

Identify hardware that has been tested to MASH

Clear Zone Defined

"The unobstructed, traversable area provided beyond the edge of the through traveled way for the recovery of errant vehicles." (RDG, 2011)



Clear Zone Origins

GM PROVING GROUND ACCIDENTS

211 CASES

Clear Zone Result (RDG, 2011)

- As a result a 30' clear zone was adopted by AASHTO
- In the 1970's the 30' was adjusted to reflect speed, side slope and ADT.

Design			Foreslopes			Backslopes			
Speed (mph)	Design ADT	1V:6H or flatter	1V:5H to 1V:4H	1V:3H	1V:3H	1V:5H to 1V:4H	1V:6H or flatter		
	UNDER 750°	7–10	7–10	Þ	7–10	7–10	7–10		
≤40	750-1500	10-12	12-14	b	12-14	12-14	12-14		
_ 10	1500-6000	12-14	14-16	b	14-16	14-16	14-16		
	OVER 6000	14–16	16–18	Ь	16–18	16–18	16–18		
	UNDER 750°	10-12	12-14	b	8–10	8–10	10-12		
45.50	750-1500	14-16	16-20	b	10-12	12-14	14-16		
45-50	1500-6000	16-18	20-26	b	12-14	14-16	16-18		
	OVER 6000	20-22	24-28	b	14-16	18–20	20-22		
	UNDER 750°	12-14	14-18	Ь	8-10	10-12	10-12		
	750-1500	16-18	20-24	b	10-12	14-16	16-18		
55	1500-6000	20-22	24-30	b	14-16	16-18	20-22		
	OVER 6000	22-24	26–32ª	Þ	16-18	20-22	22-24		
	UNDER 750°	16-18	20-24	Þ	10-12	12-14	14-16		
60	750-1500	20-24	26-32°	b	12-14	16-18	20-22		
	1500-6000	26-30	32-40°	Ь	14-18	18-22	24-26		
	OVER 6000	30-32°	36-44*	Þ	20-22	24-26	26-28		
65–70 ^d	UNDER 750°	18-20	20-26	Þ	10-12	14-16	14-16		
	750-1500	24-26	28-36"	b	12-16	18-20	20-22		
	1500-6000	28-32	34-42*	b	16-20	22-24	26-28		
	OVER 6000	30-34"	38-46°	b	22-24	26-30	28-30		

AASHTO guidance is based on assumption that 20% of vehicles will exceed the clear zone

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

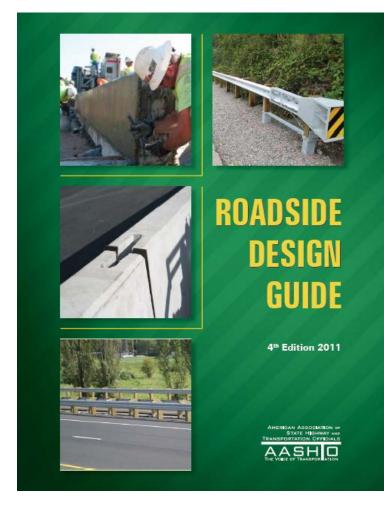
Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here

18

 $\equiv -$


 \mathcal{S}

Some Typical Roadside Obstacles

- Edge drop off
- Trees
- Utility and light poles
- Sign posts and mailboxes
- Rocks and boulders
- Ditches
- Drainage features and facilities
- Steep slopes
- Others

Methods to Address Obstacles

- Remove
- Redesign
- Relocate
- Reduce severity
- Shield
- Delineate

Shoulder Widening

The shoulder is where vehicle recovery begins!

Shoulders are most critical on horizontal curves

CMF for shoulder width on 2 lane rural roads

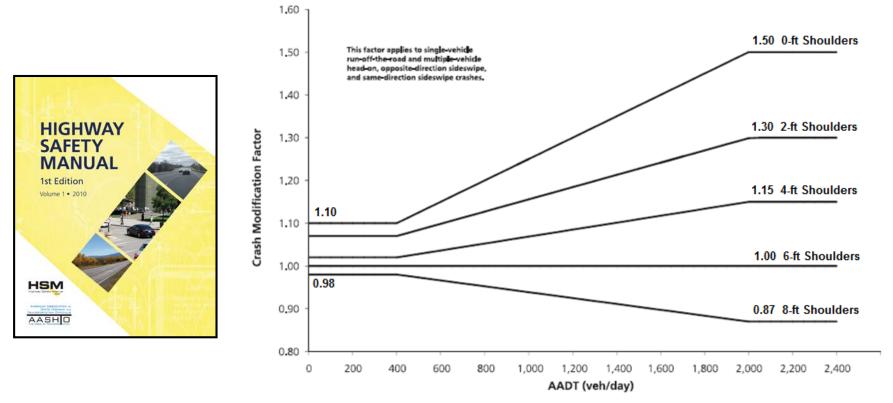


Figure 10-8. Crash Modification Factor for Shoulder Width on Roadway Segments

Reduce Edge Drop

- AAA Study (2006) suggests drop off becomes problematic between 2.25 and 2.5 inches.
- Matches well with typical 2 inch maintenance thresholds
- May be a relationship below this height but not detected in this study

- Consolidating the pavement edge into 30° shape during paving to provide stability for vehicles recovering from a roadway departure
- CMF = 0.94 for total crashes (HSIS Report)
- B/C range: 4 to 63
- Implement as a standard practice for paving and resurfacing projects

Increased Edge Compaction

With Safety Edge_{SM}

Without Safety Edge

After Shoulder is Pulled Back

Flattening Slopes

Design flatter slopes and ditches to reduce rollovers

Roadside Slopes (RDG, 2011)

- Foreslope, Backslope, Transverse Slope, & Drainage Channels
- Parallel Foreslope Definitions
 - Recoverable: 1V:4H or flatter (generally stop or slow and return)
 - Non-Recoverable: Between 1V:3H and 1V:4H (traversable, but most can not stop or return easily)
 - Critical: Steeper than 1V:3H (likelihood of overturn)

Table 13-18. Potential Crash Effects on Total Crashes of Flattening Sideslopes (15)

Treatment	Setting (Road Type)	Traffic Volume Unspecified	Crash Type (Severity) All types (Unspecified)	CMF				
Flatten	Rural			Sideslope in Before Condition	Sideslope in After Condition			
Sideslopes	(Two-lane road)				1V:4H	1V:5H	1V:6H	1V:7H
Base Condition: Existing sideslope in before condition.				1V:2H	0.94	0.91	0.88	0.85
IOTE: Standard error of the CMF is unknown.				1V:3H	0.95	0.92	0.89	0.85
		HIG		1V:4H		0.97	0.93	0.89
		1st Edit Volume 1 -	tion	1V:5H			0.97	0.92
				1V:6H				0.95

Always Consider What's at the Bottom of the Slope

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

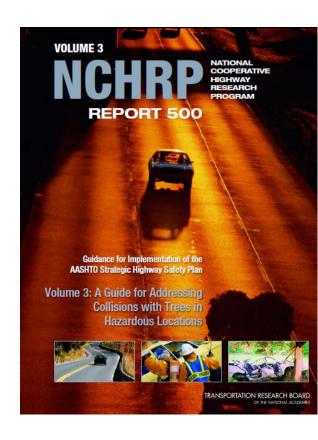
2. Type your question or comment here $\equiv -$

 \mathcal{S}

Drainage Features

Cross drainage features

Parallel drainage features



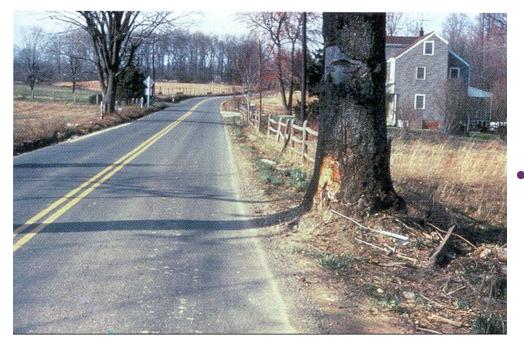
Make them Traversable (See RDG, 2011 for details)

Tree Strategies

- Avoid Placing Trees in High Risk Locations
- Remove Trees in High Risk Locations
- Shield Motorists from striking Trees in high risk locations
- Delineate Trees in High Risk Locations

High Risk Locations

- Close to travelled way
- Outside of curves
- On non-recoverable slopes



Don't forget the stumps

Some Resources

- NCHRP 500 Volume 3: A Guide for Addressing Collisions with Trees in Hazardous Locations
 - Noteworthy Practices: Roadside Tree and Utility Pole Management (2016)
- Highway Safety and Trees: The Delicate Balance (Video and brochure)

Sign Supports

Breakaway sign supports, mailboxes and delineators that have a FHWA Eligibility Letter are on the FHWA Office of Safety website

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

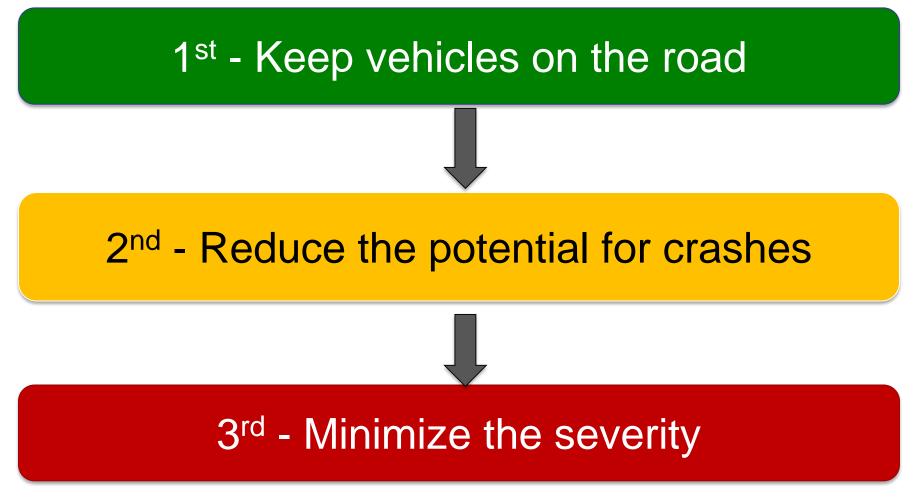
2. Type your question or comment here $\equiv -$

 \mathcal{S}

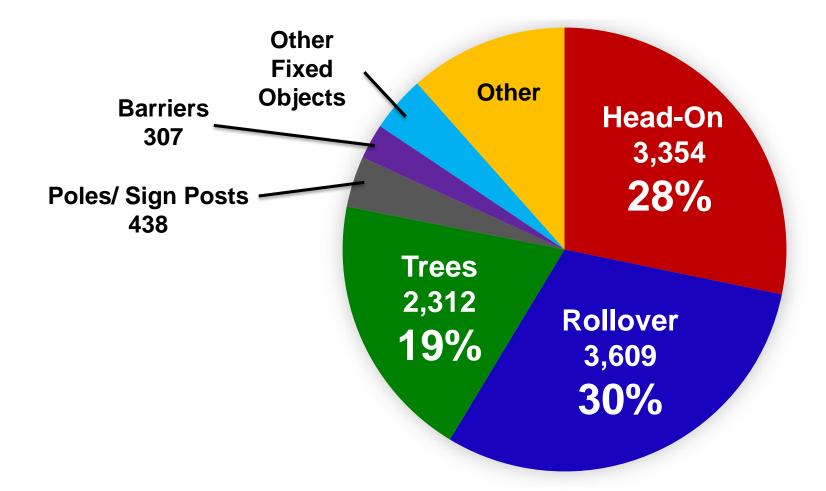
Dick Albin,

Define clear zone, it's basis, and limitations

Describe critical, traversable, and recoverable slopes

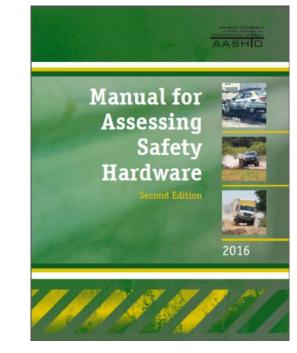

List some methods to reduce the potential to crash when a vehicle leaves the roadway

Identify the criteria for determining the crashworthiness of roadside hardware


Describe the implementation plan for MASH

Identify hardware that has been tested to MASH

Roadway Departure Objectives


Rural RwD Fatalities by Most Harmful Event (FARS 2014-2016 - average annual)

Roadside Hardware

Crashworthy Roadside Safety Hardware

- Barriers
- Terminals & Crash Cushions
- Breakaway Sign Posts
- Work Zone Devices

3rd - Minimize the severity

MASH Overview

- Specifies tests for roadside hardware devices
- Worst Practical Conditions
- Includes 6 unique Test Levels for longitudinal barriers
- Test matrices for terminals, crash cushions, sign supports, and work zone devices

Test Vehicles

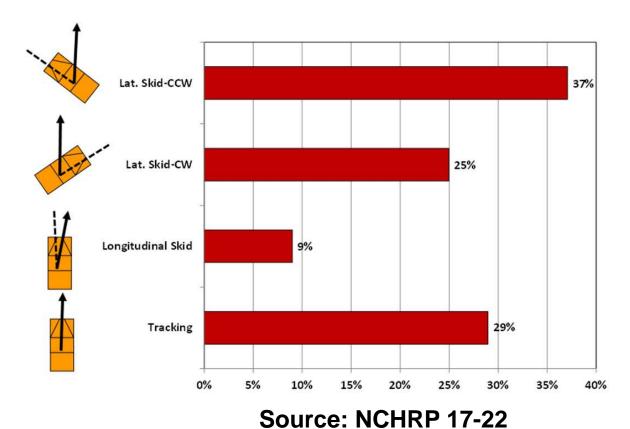
Majority of hardware tested with 2 passenger vehicles:

- 2420 # Small Car
- 5000 # Pick-up Truck

Test Vehicles

TL-4 22000 lb - SU Truck

TL-5 80,000 lb Tractor-Trailer


TL-6 80,000 lb Bulk Fluid Tanker

Test Levels

TEST LEVEL	Vehicle	IMPACT SPEED	NCCHARTER REPORT GO
TL-1	Car, PU	31 MPH	
TL-2	Car, PU	44 MPH	
TL-3	Car, PU	62 MPH	
TL-4	TL3 + 22,000# SU	56 mph	
TL-5	TL3 + 80,000# Semi	50 mph	
TL-6	TL3 + 80,000# Tanker	50 mph	48

Limitations of Crash Testing

• Vehicle may impact device differently (speed, angle, not tracking)

Limitations of Crash Testing

Vehicle size, weight, center of gravity may vary

VS

Limitations of Crash Testing

- Site conditions may vary (slopes, curbs, grade, curve, soil conditions)
- Device may be installed differently

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here $\equiv -$

 \mathcal{S}

Dick Albin,

Define clear zone, it's basis, and limitations

Describe critical, traversable, and recoverable slopes

List some methods to reduce the potential to crash when a vehicle leaves the roadway

Identify the criteria for determining the crashworthiness of roadside hardware

Describe the implementation plan for MASH

Identify hardware that has been tested to MASH

2016 MASH Implementation Plan

Existing Hardware

- Agencies are urged to establish a process to replace existing highway safety hardware that has not been successfully tested to NCHRP Report 350 or later criteria.
- Agencies are encouraged to upgrade existing highway safety hardware to comply with the 2016 edition of MASH either when it becomes damaged beyond repair, or when an individual agency's policies require an upgrade to the safety hardware.

https://design.transportation.org/mash-implementation/

54

2016 MASH Implementation Plan

New Installations

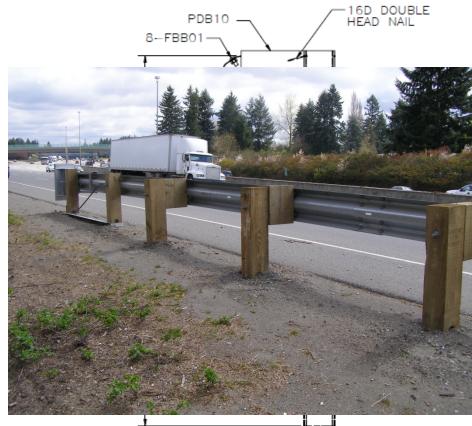
- Utilization of MASH 2016-compliant hardware will be required on new permanent installations and full replacements for projects on the <u>NHS</u> let after the dates below:
 - December 31, 2017: W-beam barrier and cast-in-place concrete barrier
 - June 30, 2018: W-beam terminals
 - December 31, 2018: Cable barrier, cable barrier terminals, and crash cushions
 - December 31, 2019: Bridge rails, transitions, all other longitudinal barriers (including portable barriers installed permanently), all other terminals (W-beam & others), sign supports, and all other breakaway hardware

https://design.transportation.org/mash-implementation/

2016 MASH Implementation Plan

What is included in the December 31, 2017, sunset date in the AASHTO/FHWA Joint Implementation Agreement?

...This sunset date is intended to cover standard installations. Special applications of these devices, such as barriers utilizing reduced post spacing, barriers installed on a flare, barriers mounted behind curbs, and barriers located at bridge ends in restricted areas, are included in the December 31, 2019, sunset date for "transitions" and "all other longitudinal barriers."


https://design.transportation.org/mash-implementation/

56

Midwest Guardrail System (MGS)

MGS uses

- Same w-beam rail
- Same 6' posts
- Top Rail height = 31"
- 12" deep blockout
- Rail Splices between posts

MGSMASH Video

Midwest Guardrail System (MGS)

The MGS has been tested to MASH:

- with steel and wood posts
- with 12" & 8" blocks, and a couple designs have also been tested with no blocks
- with long spans (leaving out up to 3 posts)
- In front of 2:1 slopes
- with curbs

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here $\equiv -$

 \mathcal{S}

Dick Albin,

Define clear zone, it's basis, and limitations

Describe critical, traversable, and recoverable slopes

List some methods to reduce the potential to crash when a vehicle leaves the roadway

Identify the criteria for determining the crashworthiness of roadside hardware

Describe the implementation plan for MASH

Identify hardware that has been tested to MASH

Concrete Barriers

Shapes tested

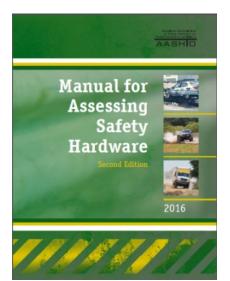
- Safety Shaped
 - New Jersey Shape
 - F-Shape
- Single Slope
- Vertical Wall

MASH NJ Concrete Barriers Video

Barriers for Large Trucks

- TL3 Passenger Vehicles (Car and PU)
 32" based on NJ shape testing
- TL4 Single Unit Truck (22,000#)
 - 36" based on Single Slope testing
- TL5 Tractor Trailer (80,000#)
 - 42" based on Vertical Wall testing

Note – No national criteria for when to use TL-4, 5, or 6


MASH Implementation Guardrail Terminals

What is included in the June 30, 2018, sunset date in the AASHTO/FHWA Joint Implementation Agreement?

• ...This sunset date covers <u>tangent terminals</u>. Other applications, such as double-sided or median terminals, flared terminals, and terminals installed on a flare, are included in the December 31, 2019, sunset date for "all other terminals."

MASH Tangent Terminals

- Soft Stop
- MSKT
- Max-Tension

Flared Terminal

Note: While the SRT M10 has been issued a MASH eligibility letter, the manufacturer is not producing this design. The SRT 350 is still available.

Eligibility Letters CC-140

Buried-In-Backslope

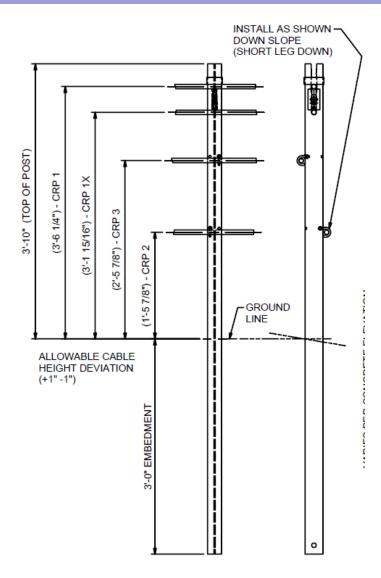
Non-proprietary Slopes as steep as 1V:4H Non-gating

MASH Implementation Cable Barriers and Crash Cushions

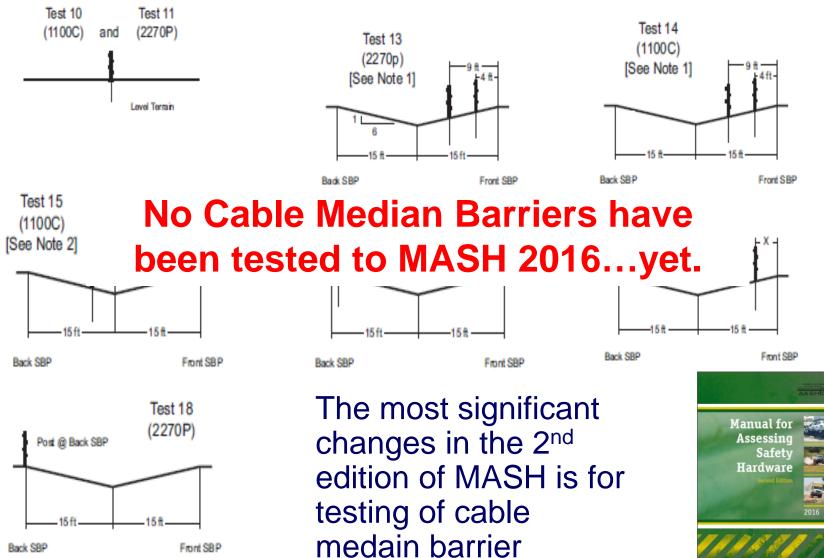
What is included in the December 31, 2018, sunset date in the AASHTO/FHWA Joint Implementation Agreement?

 The AASHTO/FHWA Joint Implementation Agreement is amended for contracts on the National Highway System such that new permanent installations and full replacements of cable barriers and cable barrier terminals must be MASH 2016-compliant by the December 31, 2019, sunset date for "all other longitudinal barriers" and "all other terminals." New permanent installations and full replacements of crash cushions will still require compliance with MASH 2016 by December 31, 2018.

https://design.transportation.org/mash-implementation/


Cable systems tested to MASH 2009

https://design.transportation.org/mash-implementation/


70

Greater Range in Cable Heights Provides More Flexibility

Eligibility Letter B-232

MASH 2016 **Tests for Cable Median Barrier**

Back SBP

Front SBP

72

Crash Cushions

 Utilization of MASH 2016-compliant Crash Cushions will be required on new permanent installations and full replacements for projects let after **December 31, 2018**

Crash Cushions tested to MASH:

- QuadGuard
- SCI
- TrafFix Big Sandy Sand Barrels

Note – no significant difference in MASH 2016

Bridge Rails

Several Tested to MASH

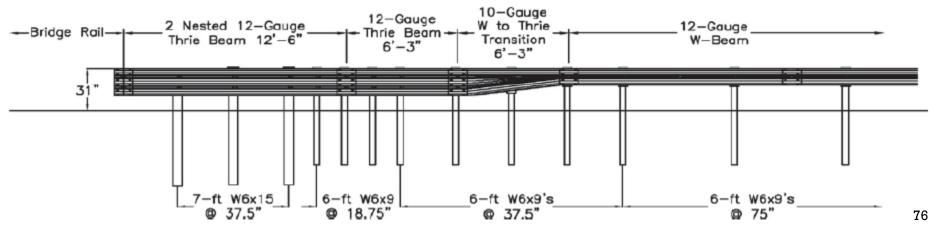
- Concrete (same shapes as rigid barriers)
- Steel
- Combination (concrete parapet with metal rail)

Bridge Rails

NCHRP 20-07 (Task 395) MASH Equivalency of NCHRP Report 350-Approved Bridge Railings

- Assessed 22 Bridge rails for
 - stability
 - rail geometrics
 - strength
- Found 12 to be satisfactory

Table 4.32 List of Similar or Less Critical Rails.				
System Name	MASH Equivalency Assessment	Similar or Less Critical Rails		
Alaska Multi-State Bridge Rail -32.5" (AK)	Satisfactory TL-3	Alaska Multi State Bridge Rail (ND)		
		Two-Tube Bridge Rail (Federal Lands)		
		2-Tube Curb Mount Rail (OR)		
		PA Type 10M Bridge Barrier (PA)		
		Type 10M (CO)		
S-352series, Bridge Railing, Galvanized Steel Tubing /Concrete Combination (VT)	Satisfactory TL-4	PS-1 (IN)		
		Bridge Railing, Aesthetic Parapet Tube (MI)		
		Bridge Sidewalk Railing with Concrete Barrier (OH)		
Type A42 Metal Bridge Railing (NM)	Satisfactory TL-4	N/A		
Bridge railing, Aesthetic Parapet Tube (B-25-J) (MI)	Satisfactory TL-4	S-352 Galvanized Steel Tubing Concrete Combination Rail (VT)		
Concrete Parapet with Structural Tubing STD-11- 1 (TN)	Satisfactory TL-3	C402 (TX)		
42" F-Shape (WV)	Satisfactory TL-5	42" F-Shape (PA, VA, OK, MD, MA)		
45" F-Shape (IN)	Satisfactory TL-5	N/A		
32" F-Shape (WV)	Satisfactory TL-3	32" F-Shape (PA, VA, LA, OR, MA, ME, FL, WS, TX)		
42" F-Shape (ME)	Satisfactory TL-4	42" F-Shape (FL, WS)		
42" Single Slope (WV)	Satisfactory TL-4	42" Single Slope (PA, VA, LA, OK, MD, MA)		
36" Single Slope (TX)	Satisfactory TL-4	36" Single Slope (TN)		


NCHRP 22-35 Evaluation of Bridge Rail Systems to Confirm AASHTO MASH Compliance (on-going)

Transitions

Several Designs Tested

- TL2
- TL3 (shown)
- TL3 with curb

Portable Concrete Barriers

- **Several Designs Tested**
- Free Standing
- Stiffened
- Anchored

Sign Supports

Tested Designs

- Flanged U-Channel Post
- Multiple Wood supports
- Steel supports with slip base

2016 MASH Implementation Plan

Work Zone

 Temporary work zone devices, including portable barriers, manufactured after December 31, 2019, must have been successfully tested to the 2016 edition of MASH. Such devices manufactured on or before this date, and successfully tested to NCHRP Report 350 or the 2009 edition of MASH, may continue to be used throughout their normal service lives.

https://design.transportation.org/mash-implementation/

79

Work Zone Devices

This Category includes:

- Temporary Sign Supports
- Barricades
- Barriers

https://www.roadsidepooledfund.org/mash-implementation/search/

ABOUT PROJECTS MASH NEWS

Implementation Dates

General Information

Research Needs List

Testing Needs List

FHWA MASH Implementation Agreement Q&A

The information provided in this database is for reference only. It is the responsibility of the user/designer to verify that the selected system meets current Federal eligibility and safety requirements. To filter available hardware devices, select the type of device, test level, eligibility letter, and if the device is proprietary/non-proprietary. If there are options available for the device selected they will appear to the right. Results are displayed below and can be selected for more information.

Device Types	Guardrail Option	ns		
-Guardrails	✓ Rail Type:			
Test Level	Box-Beam Post Material:	🛛 Thrie Beam 🗹 W-Beam	1	
3		od 🛛 Wood and Steel		
FHWA Eligibility Le				
Yes	✓ Composite	Steel 🗆 Wood 🗆 No	ne	
Proprietary/Non- proprietary				
All	~			
All	Title	Description	Proprietary/ Non proprietary	FHWA Eligibility Letter
		Description It is an adaptation of the weak-post MGS bridge rail that allows for attachment to the outside face of the culvert headwalls.		

Directing Your Questions via the Chat Pod

1. Chat pod is on left side of screen between attendees pod & closed caption pod

Chat (Everyone)

Everyone

3. Answers will appear here unless addressed verbally

2. Type your question or comment here

82

 $\equiv -$

 \mathcal{S}

In this webinar, you have learned to:

Define clear zone, it's basis, and limitations

Describe critical, traversable, and recoverable slopes

List some methods to reduce the potential to crash when a vehicle leaves the roadway

Identify the criteria for determining the crashworthiness of roadside hardware

Describe the implementation plan for MASH

Identify hardware that has been tested to MASH

SC Upcoming 2018 Webinars

• Framework for Bikeway Designation on Rural Roads

Jan. 31st, 11:00 AM to 12:30 PM Mountain

RRwD Archived Webinars

• EDC5 Reducing Rural Roadway Departures Webinar

https://connectdot.connectsolutions.com/p19821 15wf44/?proto=true

• Rural Roadway Departure Countermeasures – Part 1 and Part 2

https://ruralsafetycenter.org/trainingeducation/safety-center-trainings/archivedsafety-center-trainings/

Reducing Rural Roadway Departures

https://www.fhwa.dot.gov/innovation/everydayc ounts/edc 5/roadway departures.cfm

Contact Information

If you have any questions related to this presentation, please contact:

Keith Knapp—<u>kknapp@iastate.edu</u> Dick Albin - <u>Dick.Albin@dot.gov</u>

Or contact the National Center for Rural Road Safety Help Desk at: (844) 330-2200 or info@ruralsafetycenter.org http://ruralsafetycenter.org/